The Dimension of an Amoeba

Chi Ho Yuen (University of Bern)

Joint Work with Jan Draisma (University of Bern) and Johannes Rau (University of Tübingen)

ASGARD Math 2019

May 16, 2019
Basic Setup

- $X \subset (\mathbb{C}^*)^n$: irreducible subvariety.
- $\text{Log} : (\mathbb{C}^*)^n \to \mathbb{R}^n$ by $(z_1, \ldots, z_n) \mapsto (\log |z_1|, \ldots, \log |z_n|)$.
- $\text{Ameoba } \mathcal{A}(X) := \text{Log}(X)$.
- Notion by Gelfand–Kapranov–Zelevinsky. Related to A-discriminants, real algebraic geometry, mirror symmetry, etc.
Example of Amoeba

\[X = V(x + y + 1) \subset (\mathbb{C}^*)^2. \]

Figure 1.2 of *Tropical Algebraic Geometry* by Itenberg et al.
An amoeba has a canonical spine, which is the tropicalisation of X.

$A(X)$ and $\text{Trop}(X)$.

Chi Ho Yuen (University of Bern)

The Dimension of an Amoeba

May 16, 2019
Well-known: \(\dim_{\mathbb{R}} \text{Trop}(X) = \dim_{\mathbb{C}} X \).

Question

What about the (real) dimension of \(A(X) \)?
Question

Well-known: $\dim_\mathbb{R} \text{Trop}(X) = \dim_\mathbb{C} X$.

Question

What about the (real) dimension of $\mathcal{A}(X)$?

- Intuition/generic case: $\dim_\mathbb{R} X = 2 \dim_\mathbb{C} X$, and Log is “nice”, so $\dim_\mathbb{R} \mathcal{A}(X) = 2 \dim_\mathbb{C} X$.
Well-known: \(\dim_{\mathbb{R}} \text{Trop}(X) = \dim_{\mathbb{C}} X \).

Question

What about the (real) dimension of \(A(X) \)?

- Intuition/generic case: \(\dim_{\mathbb{R}} X = 2 \dim_{\mathbb{C}} X \), and Log is “nice”, so \(\dim_{\mathbb{R}} A(X) = 2 \dim_{\mathbb{C}} X \).
- In general \(2 \dim_{\mathbb{C}} X \) is an upper bound, but equality does not always hold.
Example (Hypersurface)

If $n > 2$ and X is a hypersurface, then
$$\dim_{\mathbb{R}} \mathcal{A}(X) \leq \dim_{\mathbb{R}} \mathbb{R}^n = n < 2(n - 1) = 2 \dim_{\mathbb{C}} X.$$
Examples of Dimension Drop

Example (Hypersurface)
If \(n > 2 \) and \(X \) is a hypersurface, then
\[
\dim_{\mathbb{R}} \mathcal{A}(X) \leq \dim_{\mathbb{R}} \mathbb{R}^n = n < 2(n - 1) = 2 \dim_{\mathbb{C}} X.
\]

Example (Torus)
\(X = \{(z^1 w^4, z^2 w^5, z^3 w^6) : z, w \in \mathbb{C}^*\} \) is a 2-dimensional subtorus. \(\mathcal{A}(X) = \text{span}\{(1, 2, 3), (4, 5, 6)\} \) is a 2-dimensional subspace. In general, the amoeba of a \(k \)-dimensional subtorus is a \(k \)-dimensional subspace.
More Examples of Dimension Drop

Example (Torus Action)

Suppose \(S \cdot X := \{(s_1z_1, \ldots, s_nz_n) : s \in S, z \in X\} = X \) for some \(k \)-dim torus \(S \).

\(X \mapsto X/S =: Y \subset (\mathbb{C}^*)^n/S \) (resp. \(\mathcal{A}(X) \mapsto \mathcal{A}(X)/\mathcal{A}(S) = \mathcal{A}(Y) \)) has fibers isomorphic to \(S \) (resp. \(\mathcal{A}(S) \)).

So \(\dim_{\mathbb{R}} \mathcal{A}(X) = k + \dim_{\mathbb{R}} \mathcal{A}(Y) \leq k + 2 \dim_{\mathbb{C}} Y = k + 2(\dim_{\mathbb{C}} X - k) = 2 \dim_{\mathbb{C}} X - k \).
More Examples of Dimension Drop

Example (Torus Action)

Suppose \(S \cdot X := \{(s_1z_1, \ldots, s_nz_n) : s \in S, z \in X\} = X \) for some \(k \)-dim torus \(S \).

\[X \mapsto X/S =: Y \subset (\mathbb{C}^*)^n/S \quad \text{(resp. } \mathcal{A}(X) \mapsto \mathcal{A}(X)/\mathcal{A}(S) = \mathcal{A}(Y)) \text{ has fibers isomorphic to } S \quad \text{(resp. } \mathcal{A}(S)). \]

So \(\dim_{\mathbb{R}} \mathcal{A}(X) = k + \dim_{\mathbb{R}} \mathcal{A}(Y) \leq k + 2 \dim_{\mathbb{C}} Y = k + 2(\dim_{\mathbb{C}} X - k) = 2 \dim_{\mathbb{C}} X - k. \)

- Nisse–Sottile (2018) suggested a program to understand amoebas better, including a conjecture about the dimension of amoebas.
Main Theorem

Theorem (Draisma–Rau–Y. 2018+)
\[\dim_{\mathbb{R}} A(X) = \min \{ 2 \dim_{\mathbb{C}} X + 2 \dim_{\mathbb{C}} T - \dim_{\mathbb{C}} S \}, \text{ taken over } T \subset S \subset (\mathbb{C}^*)^n \text{ subtori such that } S \cdot T \cdot X = T \cdot X. \]
Theorem (Draisma–Rau–Y. 2018+)

\[\dim \mathcal{A}(X) = \min \{ 2 \dim \mathbb{C} X + 2 \dim \mathbb{C} T - \dim \mathbb{C} S \}, \text{ taken over } T \subset S \subset (\mathbb{C}^*)^n \text{ subtori such that } S \cdot T \cdot X = T \cdot X. \]

Corollary

\[\dim \mathcal{A}(X) = \min \{ 2 \dim \mathbb{C} S \cdot X - \dim \mathbb{C} S : S \subset (\mathbb{C}^*)^n \text{ subtorus} \}. \]
Main Theorem

Theorem (Draisma–Rau–Y. 2018+)

\[\dim_{\mathbb{R}} A(X) = \min \{ 2 \dim_{\mathbb{C}} X + 2 \dim_{\mathbb{C}} T - \dim_{\mathbb{C}} S \}, \text{ taken over } T \subset S \subset (\mathbb{C}^*)^n \text{ subtori such that } S \cdot \overline{T} \cdot X = \overline{T} \cdot X. \]

Corollary

\[\dim_{\mathbb{R}} A(X) = \min \{ 2 \dim_{\mathbb{C}} S \cdot X - \dim_{\mathbb{C}} S : S \subset (\mathbb{C}^*)^n \text{ subtorus} \}. \]

Corollary (Conjecture of Nisse–Sottile)

\[\dim_{\mathbb{R}} A(X) < \min \{ 2 \dim_{\mathbb{C}} X, n \} \text{ iff } X \text{ admits a near/diminishing torus action.} \]
Theorem (DRY 2018+)

$$\dim_{\mathbb{R}} A(X) = \min \{ 2 \dim_{\mathbb{C}} X + 2 \dim_{\mathbb{C}} T - \dim_{\mathbb{C}} S : S \cdot \overline{T} \cdot X = \overline{T} \cdot X \}.$$
Theorem (DRY 2018+)

\[\dim_{\mathbb{R}} A(X) = \min \{ 2 \dim_{\mathbb{C}} X + 2 \dim_{\mathbb{C}} T - \dim_{\mathbb{C}} S : S \cdot \overline{T} \cdot X = \overline{T} \cdot X \} \].

Example (Trivial Bound)

Take \(T = S = \{1\} \). Then \(\dim_{\mathbb{R}} A(X) \leq 2 \dim_{\mathbb{C}} X \).
Verifications

Theorem (DRY 2018+)

\[
\dim_{\mathbb{R}} A(X) = \min \{ 2 \dim_{\mathbb{C}} X + 2 \dim_{\mathbb{C}} T - \dim_{\mathbb{C}} S : S \cdot \overline{T} \cdot X = \overline{T} \cdot X \}.
\]

Example (Trivial Bound)

Take \(T = S = \{1\} \). Then \(\dim_{\mathbb{R}} A(X) \leq 2 \dim_{\mathbb{C}} X \).

Example (Hypersurface)

Take \(T \) to be any generic 1-dim subtorus such that \(\overline{T} \cdot X = (\mathbb{C}^*)^n \). Then \(\dim_{\mathbb{R}} A(X) \leq 2 \dim_{\mathbb{C}} X + 2 \dim_{\mathbb{C}} T - \dim_{\mathbb{C}} (\mathbb{C}^*)^n = 2(n - 1) + 2 - n = n \).
Theorem (DRY 2018+)

\[\dim_{\mathbb{R}} A(X) = \min \{ 2 \dim_{\mathbb{C}} X + 2 \dim_{\mathbb{C}} T - \dim_{\mathbb{C}} S : S \cdot \overline{T} \cdot X = \overline{T} \cdot X \}. \]

Proof of \(\leq \):

\[\dim_{\mathbb{R}} A(X) \leq \dim_{\mathbb{R}} A(\overline{T} \cdot X) \leq 2 \dim_{\mathbb{C}} \overline{T} \cdot X - \dim_{\mathbb{C}} S \leq 2(\dim_{\mathbb{C}} X + \dim_{\mathbb{C}} T) - \dim_{\mathbb{C}} S. \]
Abs : $(\mathbb{C}^*)^n \to \mathbb{R}^n_0$ by $(z_1, \ldots, z_n) \mapsto (|z_1|, \ldots, |z_n|)$.
$|X| := \text{Abs}(X)$ is the \textit{algebraic amoeba}, which is semi-algebraic.
Abs : $(\mathbb{C}^*)^n \to \mathbb{R}^n_{>0}$ by $(z_1, \ldots, z_n) \mapsto (|z_1|, \ldots, |z_n|)$.
$|X| := \text{Abs}(X)$ is the \textit{algebraic amoeba}, which is semi-algebraic.

Goal: Find a \textit{rational} subspace U of positive dimension that is contained in (almost) all $T_qA(X)$'s.
Rational: $U = \text{span}(U \cap \mathbb{Q}^n)$.

Abs : $(\mathbb{C}^*)^n \to \mathbb{R}_{>0}^n$ by $(z_1, \ldots, z_n) \mapsto (|z_1|, \ldots, |z_n|)$.
$|X| := \text{Abs}(X)$ is the \textit{algebraic amoeba}, which is semi-algebraic.

Goal: Find a \textit{rational} subspace U of positive dimension that is contained in (almost) all $T_qA(X)$’s.
Rational: $U = \text{span}(U \cap \mathbb{Q}^n)$.

Idea: $\overline{|X|}$ is stable under the action of R, the real subtorus whose tangent space is U. T, S will be inductively constructed using R (and its complexification).
Goal: Find a rational subspace U contained in (almost) all $T_q \mathcal{A}(X)$'s.

Lemma ("Swapping Quantifiers Principle")

"$\exists U, \forall q, U \leq T_q \mathcal{A}(X)$" is equivalent to "$\forall q, \exists U_q, U_q \leq T_q \mathcal{A}(X)$".

Proof: Suppose $|X| \approx \mathcal{A}(X)$ equals the union of (real-Zariski-closed) $\{ q : U \leq T_q \mathcal{A}(X) \}$ over all rational U's. $|X|$ is irreducible and the union is countable, so one of such $\{ q : U \leq T_q \mathcal{A}(X) \}$'s is the whole of $|X|$.
Sketch of Proof: Swapping Real and Imaginary Parts

Since \(z = re^{i\theta} \), each \(T_zX \) decomposes into real and imaginary parts from
\[
T_1(\mathbb{C}^*)^n = \mathbb{C}^n \cong \mathbb{R}^n \oplus i\mathbb{R}^n = T_1\mathbb{R}^n_0 \oplus T_0(S^1)^n.
\]

Observation

Abs takes the real part to \(T_{|z|}|X| \) and kills the imaginary part. But \(T_zX \) is a complex v.s., so its real part is precisely \(i \) times its imaginary part.
Sketch of Proof: Swapping Real and Imaginary Parts

Since $z = re^{i\theta}$, each T_zX decomposes into real and imaginary parts from $T_1(C^*)^n = C^n \cong R^n \oplus iR^n = T_1R^0 \oplus T_0(S^1)^n$.

Observation

Abs takes the real part to $T_{|z|}|X|$ and kills the imaginary part. But T_zX is a complex v.s., so its real part is precisely i times its imaginary part.

- Now it suffices to find U from $Z_q := \text{Abs}^{-1}(q) \cap X \subset (S^1)^n$.
 (More precisely, from $\sum_{p \in Z_q} T_pZ_q$.)
Sketch of Proof: Swapping Real and Imaginary Parts

Since $z = re^{i\theta}$, each T_zX decomposes into real and imaginary parts from $T_1(\mathbb{C}^*)^n = \mathbb{C}^n \cong \mathbb{R}^n \oplus i\mathbb{R}^n = T_1\mathbb{R}^n_0 \oplus T_0(S^1)^n$.

Observation

Abs takes the real part to $T|z| |X|$ and kills the imaginary part. But T_zX is a complex v.s., so its real part is precisely i times its imaginary part.

- Now it suffices to find U from $Z_q := \text{Abs}^{-1}(q) \cap X \subset (S^1)^n$. (More precisely, from $\sum_{p \in Z_q} T_pZ_q$.)
- U is essentially the tangent space of $\langle Z_q \rangle$.
Corollary

$$\dim_{\mathbb{R}} A(X) = \min \{2 \dim_{\mathbb{R}} (S + \text{Trop}(X)) - \dim_{\mathbb{R}} S : S \leq \mathbb{R}^n \text{ rational} \}.$$
Corollary
\[\dim_{\mathbb{R}} A(X) = \min \{ 2 \dim_{\mathbb{R}} (S + \text{Trop}(X)) - \dim_{\mathbb{R}} S : S \leq \mathbb{R}^n \text{ rational} \}. \]

Question
Can \(\dim_{\mathbb{R}} A(X) \) be computed given \(\text{Trop}(X) \)?
Corollary

\[\dim_{\mathbb{R}} A(X) = \min \{ 2 \dim_{\mathbb{R}} (S + \text{Trop}(X)) - \dim_{\mathbb{R}} S : S \leq \mathbb{R}^n \text{ rational} \}. \]

Question

Can \(\dim_{\mathbb{R}} A(X) \) be computed given \(\text{Trop}(X) \)?

- The above formula is computable (using real quantifier elimination) if the rationality condition is dropped.
Corollary
\[
\dim \mathcal{R} \mathcal{A}(X) = \min \{ 2 \dim \mathcal{R}(S + \text{Trop}(X)) - \dim \mathcal{R} S : S \leq \mathbb{R}^n \text{ rational} \}.
\]

Question

Can \(\dim \mathcal{R} \mathcal{A}(X) \) be computed given \(\text{Trop}(X) \)?

- The above formula is computable (using real quantifier elimination) if the rationality condition is dropped.
- But can we drop it?
Thank you!
Proposition (Nisse–Sottile)

\[\dim_{\mathbb{R}} A(X) = \dim_{\mathbb{C}} X \text{ iff } X \text{ is a single torus orbit } S \cdot x. \]

Proof: \[2 \dim_{\mathbb{C}} S \cdot X - \dim_{\mathbb{C}} S = \dim_{\mathbb{C}} X \] for some subtorus \(S \). Since \(S \cdot X \supset X, S \cdot x \), we must have \(\dim_{\mathbb{C}} S \cdot X = \dim_{\mathbb{C}} S = \dim_{\mathbb{C}} X \), but this forces everything to be equal.