A DIRECT PROOF THAT NON-OVERLAPPING SIMPLICES FORM
A TRIANGULATION FOR LAWRENCE POLYTOPES

CHI HO YUEN

ABSTRACT. We give a direct proof of (a strengthening of ) Proposition 5.8 in Backman-—
Santos—Yuen: a non-overlapping collection of simplices of a Lawrence polytope that
has the right cardinality is a triangulation of the polytope.

N.B. This manuscript is not self-contained at this moment. The reader is expected
to refer to the original paper [2] and standard references such as [I}, [4] for further back-
ground, terminology, and notation.

A triangulation of an oriented matroid is a collection of bases (geometrically, sim-
plices) that satisfies the pseudo-manifold property (geometrically, the facets of the sim-
plices align correctly) and the non-overlapping property (geometrically, the interior of
the simplices do not intersectED. See [4, Chapter 2] for more equivalent definitions.

In [2], Backman, Santos, and myself studied several aspects of the extension-lifting
bijections, including their connection with the triangulations of Lawrence polytopes;
see also the work of Ding [3]. It is known that the bases in any triangulation of a
Lawrence polytope are in bijection with the bases of the original oriented matroid
[4, Proposition 4.12], in particular, all triangulations have the same cardinality. [2}
Proposition 5.8] states a converse of this fact: any non-overlapping collection of bases
constructed from the bases of the original oriented matroid forms a triangulation.

The proof given in [2] uses a non-trivial result of Santos [4, Theorem 4.14], while we
remarked that a direct proof is possible (which in turns gives a new proof of several
statements in the literature), and the purpose of this manuscript is to describe such
a proof. In fact, we prove a slightly stronger statement where we only assume the
cardinality and the non-overlapping property of the collection.

Proposition 1. Let M be an oriented matroid and let A(M) be its the Lawrence
polytope. Then any non-overlapping collection of |B(M)| bases of A(M) form a trian-
gulation of A(M).

We adopt the notation in [2]: M is on the ground set E whereas A(M) ison EUE,
we identify a subset of M with the same subset of E C A(M) and a signed subset
(XT, X7) of M with the subset X+ UX~ of A(M). For elements of A(M), ¢ : A(M) —
A(M),: : A(M) — M are the involution map e <> € and projection map e,e — e,
respectively.
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1As Santos pointed out, this geometric interpretation is valid only when the pseudo-manifold prop-
erty is present, so the interpretation is more of an intuition rather than a rigorous statement here.
1



2 CHI HO YUEN

Proof. Fix a collection T of bases as in the proposition statement. Recall that every
basis of A(M) is of the form B4 := BUBUAUE\ (AU B), where B is a basis of M
and AC F\ B.

We first prove that 7 does not contain two bases B4, BA2 of A(M) coming from
the same basis B of M. Suppose not, by swapping the role of A, As if needed, we may
assume there exists a € Ay \ Ay. Pick the signed circuit C = (C*,C~) of M supported
on the fundamental circuit of a with respect to B such that a € C*. Then B41, BA2
overlap on the signed circuit (C+UC—,C+TUC™) of A(M).

By considering cardinality, there is a bijection between the bases of M and the bases
in 7 via B — B42 =: B; this is the assumption in the original [2, Proposition 5.8].
By [2, Lemma 5.7], T is mduced by some circuit signature o of M: o is a map that
picks, for every circuit C' of (the underlying matroid of) M, a signed circuit o(C) of
M supported on C; moreover, whenever C' is the fundamental circuit with respect to
some basis B of M, ¢(C) is contained in B € 7. It remains to show that 7 satisfies
the pseudo-manifold property. Let B be a basis in T coming from B € B(M), and let
e be an element of B, we verify that B\ e is either contained in another basis in 7 or
its complement contains a positive cocircuit.

Case I: e ¢ BUE.N
The complement of B \ e now contains the positive cocircuit {e,t(e)} of A(M).

Case II: e € BUB.

Let D be the fundamental cocircuit of e with respect to B, and let D be the signed
cocircuit of M supported on D such that e € D (when D is viewed as a subset of A(M)).
We are done if the complement of B \ e contains the positive circuit D = Dt U D= of
A(M), so we assume (B\ ¢) N D = {e1,..., e} is non-empty.

For each e;, denote the basis (B \ e) U {e;} of M by B; (the fact that B; is a basis
follows from that e;’s are elements in the fundamental cocircuit of e with respect to
B), and the fundamental circuit of e; with respect to B by C;. C; and D are both
fundamental circuit and cocircuit of B and B;, respectlvely, SO C’ ND = {e,e}. By
the choice of D we know that e; € D, while o(C;) C B implies that ¢; € o(C;) as well.
Therefore by the orthogonality between signed circuits and signed cocircuits, we have

(e )EU(C)CBZ,andegB
Next we note that if there exists some f € B\ B; besides e, then f € D: we still have

{f,u(f)} C B; for any f € B\e, while for f € E\ (BUD), the fundamental circuits of
J with respect to B and B; are the same, so the same signed circuit picked out by o
is present in both B and E Let Cy = (C;[, C’]?) be the signed circuit of M supported
on the fundamental circuit of f with respect to B such that f € Cy when viewed as
a subset of A(M). If f & D, then by the orthogonality between D and Cy, we have
e € Cy, and B, B; overlap on the signed circuit (C]T ucy,Cpu C’Jf) of A(M) (with
the element “a” in the definition of non-overlapping being either f or «(f), depending
on which side f is in), a contradiction. Hence, we must have f = e; for some j # i.
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Now we build a digraph I' whose vertices are eq, ..., e; by including a directed edge
e; — e; whenever e; € B\ B;. We claim that I is a tournament. For each pair of 4, j, let
C;,; be the fundamental circuit of e; with respect to B;, which is also the fundamental

circuit of e; with respect to B;. The same o(C; j) is contained in both B; and B; , and

by the orthogonality between o(C; j) and D, exactly one of e; € B \ B and ¢; € B \ B
happen.

Case II-a: T is acyclic. o _
It is well-known that I' must have a sink e; in this case, so B \ B; = {e}, i.e., B\ e is
contained in 7 3 B; = (B \ e) U{(e;)}.

Case II-b: T is not acyclic.
It is in turn well-known that I' must contain a directed 3-cycle e; — e; — er — e;.
Let C be the fundamental circuit of e, with respect to B;. The absence of the directed
edge e; — e; in ' means e, € B;, and since C = (C*,C7) := ¢(C) C B;, we have
er € C, and t(e;) € C by the orthogonality between C' and D. On the other hand, the
directed edge e; — ej, means e, € B\BZ, so we have t(ey) € BZ instead. Moreover, the
absence of e; — ¢; implies ¢; € BJ7 so we must have +(C) C /BZ-, a contradiction as now

B;, B overlap on the signed circuit (C+ U C—,CT U C™) of A(M) (with the element
“a” belng either e or t(ex)). O
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