
A DIRECT PROOF THAT NON-OVERLAPPING SIMPLICES FORM

A TRIANGULATION FOR LAWRENCE POLYTOPES

CHI HO YUEN

Abstract. We give a direct proof of (a strengthening of) Proposition 5.8 in Backman–
Santos–Yuen: a non-overlapping collection of simplices of a Lawrence polytope that
has the right cardinality is a triangulation of the polytope.

N.B. This manuscript is not self-contained at this moment. The reader is expected
to refer to the original paper [2] and standard references such as [1, 4] for further back-
ground, terminology, and notation.

A triangulation of an oriented matroid is a collection of bases (geometrically, sim-
plices) that satisfies the pseudo-manifold property (geometrically, the facets of the sim-
plices align correctly) and the non-overlapping property (geometrically, the interior of
the simplices do not intersect1). See [4, Chapter 2] for more equivalent definitions.

In [2], Backman, Santos, and myself studied several aspects of the extension-lifting
bijections, including their connection with the triangulations of Lawrence polytopes;
see also the work of Ding [3]. It is known that the bases in any triangulation of a
Lawrence polytope are in bijection with the bases of the original oriented matroid
[4, Proposition 4.12], in particular, all triangulations have the same cardinality. [2,
Proposition 5.8] states a converse of this fact: any non-overlapping collection of bases
constructed from the bases of the original oriented matroid forms a triangulation.

The proof given in [2] uses a non-trivial result of Santos [4, Theorem 4.14], while we
remarked that a direct proof is possible (which in turns gives a new proof of several
statements in the literature), and the purpose of this manuscript is to describe such
a proof. In fact, we prove a slightly stronger statement where we only assume the
cardinality and the non-overlapping property of the collection.

Proposition 1. Let M be an oriented matroid and let Λ(M) be its the Lawrence
polytope. Then any non-overlapping collection of |B(M)| bases of Λ(M) form a trian-
gulation of Λ(M).

We adopt the notation in [2]: M is on the ground set E whereas Λ(M) is on E tE,
we identify a subset of M with the same subset of E ⊂ Λ(M) and a signed subset

(X+, X−) of M with the subset X+∪X− of Λ(M). For elements of Λ(M), ι : Λ(M)→
Λ(M), · : Λ(M) → M are the involution map e ↔ e and projection map e, e 7→ e,
respectively.
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1As Santos pointed out, this geometric interpretation is valid only when the pseudo-manifold prop-

erty is present, so the interpretation is more of an intuition rather than a rigorous statement here.
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Proof. Fix a collection T of bases as in the proposition statement. Recall that every
basis of Λ(M) is of the form BA := B ∪B ∪A ∪E \ (A ∪B), where B is a basis of M
and A ⊂ E \B.

We first prove that T does not contain two bases BA1 , BA2 of Λ(M) coming from
the same basis B of M . Suppose not, by swapping the role of A1, A2 if needed, we may
assume there exists a ∈ A1 \A2. Pick the signed circuit C = (C+, C−) of M supported
on the fundamental circuit of a with respect to B such that a ∈ C+. Then BA1 , BA2

overlap on the signed circuit (C+ ∪ C−, C+ ∪ C−) of Λ(M).
By considering cardinality, there is a bijection between the bases of M and the bases

in T via B 7→ BAB =: B̃; this is the assumption in the original [2, Proposition 5.8].
By [2, Lemma 5.7], T is induced by some circuit signature σ of M : σ is a map that
picks, for every circuit C of (the underlying matroid of) M , a signed circuit σ(C) of
M supported on C; moreover, whenever C is the fundamental circuit with respect to

some basis B of M , σ(C) is contained in B̃ ∈ T . It remains to show that T satisfies

the pseudo-manifold property. Let B̃ be a basis in T coming from B ∈ B(M), and let

e be an element of B̃, we verify that B̃ \ e is either contained in another basis in T or
its complement contains a positive cocircuit.

Case I: e 6∈ B ∪B.

The complement of B̃ \ e now contains the positive cocircuit {e, ι(e)} of Λ(M).

Case II: e ∈ B ∪B.
Let D be the fundamental cocircuit of e with respect to B, and let D be the signed
cocircuit of M supported on D such that e ∈ D (when D is viewed as a subset of Λ(M)).

We are done if the complement of B̃ \ e contains the positive circuit D = D+ ∪D− of

Λ(M), so we assume (B̃ \ e) ∩D = {e1, . . . , et} is non-empty.
For each ei, denote the basis (B \ e) ∪ {ei} of M by Bi (the fact that Bi is a basis

follows from that ei’s are elements in the fundamental cocircuit of e with respect to
B), and the fundamental circuit of ei with respect to B by Ci. Ci and D are both
fundamental circuit and cocircuit of B and Bi, respectively, so Ci ∩ D = {e, ei}. By

the choice of D we know that ei ∈ D, while σ(Ci) ⊂ B̃ implies that ei ∈ σ(Ci) as well.
Therefore by the orthogonality between signed circuits and signed cocircuits, we have

ι(e) ∈ σ(Ci) ⊂ B̃i, and e 6∈ B̃i.

Next we note that if there exists some f ∈ B̃ \B̃i besides e, then f ∈ D: we still have

{f, ι(f)} ⊂ B̃i for any f ∈ B \ e, while for f ∈ E \ (B ∪D), the fundamental circuits of
f with respect to B and Bi are the same, so the same signed circuit picked out by σ

is present in both B̃ and B̃i. Let Cf = (C+
f , C

−
f ) be the signed circuit of M supported

on the fundamental circuit of f with respect to B such that f ∈ Cf when viewed as
a subset of Λ(M). If f 6∈ D, then by the orthogonality between D and Cf , we have

e ∈ Cf , and B̃, B̃i overlap on the signed circuit (C+
f ∪ C

−
f , C

−
f ∪ C

+
f ) of Λ(M) (with

the element “a” in the definition of non-overlapping being either f or ι(f), depending
on which side f is in), a contradiction. Hence, we must have f = ej for some j 6= i.
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Now we build a digraph Γ whose vertices are e1, . . . , et by including a directed edge

ei → ej whenever ej ∈ B̃\B̃i. We claim that Γ is a tournament. For each pair of i, j, let
Ci,j be the fundamental circuit of ej with respect to Bi, which is also the fundamental

circuit of ei with respect to Bj . The same σ(Ci,j) is contained in both B̃i and B̃j , and

by the orthogonality between σ(Ci,j) and D, exactly one of ej ∈ B̃ \ B̃i and ei ∈ B̃ \ B̃j

happen.

Case II-a: Γ is acyclic.

It is well-known that Γ must have a sink ei in this case, so B̃ \ B̃i = {e}, i.e., B̃ \ e is

contained in T 3 B̃i = (B̃ \ e) ∪ {ι(ei)}.

Case II-b: Γ is not acyclic.
It is in turn well-known that Γ must contain a directed 3-cycle ei → ej → ek → ei.
Let C be the fundamental circuit of ek with respect to Bi. The absence of the directed

edge ei → ek in Γ means ek ∈ B̃i, and since C = (C+, C−) := σ(C) ⊂ B̃i, we have
ek ∈ C, and ι(ei) ∈ C by the orthogonality between C and D. On the other hand, the

directed edge ej → ek means ek ∈ B̃ \ B̃j , so we have ι(ek) ∈ B̃j instead. Moreover, the

absence of ej → ei implies ei ∈ B̃j , so we must have ι(C) ⊂ B̃j , a contradiction as now

B̃i, B̃j overlap on the signed circuit (C+ ∪ C−, C+ ∪ C−) of Λ(M) (with the element
“a” being either ek or ι(ek)). �
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