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Some Physics (that I don’t really understand)

Supersymmetry (SUSY): Every boson φ has an associated fermion ψ
and vice versa.

Physicists are interested in SUSY superalgebras, some particularly
interesting/useful ones satisfy:

the algebra is generated by Q1, . . . ,QN ,H :=
√
−1∂t ;

the generators act on {φ1, . . . , φm;ψ1, . . . , ψm};
each Qi takes a boson to some fermion up to signs and H, vice versa;

QiQj + QjQi = 2δijH and QiH = HQi .

If we pretend H does nothing, we get a Clifford algebra Cl(0,N):
Q2

i = I ,QiQj = −QjQi .

Chi Ho Yuen (U of Oslo) The Critical Group of an Adinkra 3 / 23



Adinkras

Definition (Faux–Gates 2004 )

An Adinkra/Cliffordinkra is a (connected, simple) graph with each edge
colored by one of N colors and is either solid or dashed, such that:

1 the graph is bipartite;

2 every vertex is incident to exactly one edge of each color;

3 for each pair of distinct colors, the graph restricted to these colored
edges is a disjoint union of 4-cycles;

4 each bi-colored 4-cycle contains an odd number of dashed edges.

Related to: Error correcting codes, cubical cohomology, combinatorial
maps and Riemann surfaces, etc.
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Some Operations on Adinkras

Definition

Prism: Create a new copy with solid/dashed reversed, match old and
new vertices with solid edges of a new color.

Vertex Switch: Reverse solid/dashed for edges incident to a vertex.
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Classification of the Underlying Graphs

Definition

A doubly even code C is a subspace of FN
2 such that the weight of every

element is a multiple of 4.

Example: The row space of

1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1

 .

Theorem (DFGHILM 2008)

A graph admits an Adinkra structure iff it is a hypercube modulo some
doubly even code, i.e., the vertex set is FN

2 /C, and [x] ∼ [y] whenever
x ∼ y in the hypercube.

Example: K4,4 is the quotient of the 4-dim cube by the code 〈(1 1 1 1)〉.
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Laplacian, Critical Group, and Matrix–Tree Theorem

Definition

Laplacian: L := D −A, D is the diagonal matrix whose entries are the
vertex degrees, A is the adjacency matrix.

Critical group: coker L := ZV / rowZ L = K (G )⊕ Z.

G : 1 4

2

3

, L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

 ,K (G ) ∼= Z/8Z

As known as sandpile group or Jacobian, and is related to chip-firing and
many areas.

Theorem (Kirchhoff’s Matrix–Tree Theorem)

|K (G )| = # of spanning trees of G.
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Signed Graphs

Definition

Signed Graph: A graph with a signing E → {+,−} of the edges.

Spanning Tree: Every component has exactly one cycle, which must
have an odd number of −ve edges.

Weight of a ST: w(T ) := 4# of components.

Weights: 4,4,4,16

Non-examples:
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Laplacians and Matrix–Tree Theorem of Signed Graphs

Definition

Laplacian: L := D − A, but an entry of A is −1 if the edge is −ve.

Critical group: K (G ) := coker L.

G :

1 4

3 2

, L =


2 0 −1 −1
0 2 1 −1
−1 1 2 0
−1 −1 0 2

 ,K (G ) ∼= (Z/2Z)2

Theorem (Zaslavsky 1982)

|K (G )| = det L =
∑

T w(T ).
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A Quadratic Relation of L

L is the signed Laplacian of an Adinkra of N colors.

Proposition

L2 − 2NL + (N2 − N)I = 0.

Proof: We show the simpler relation A2 = NI . It is well-known that the
(u, v)-entry of A2 is the weighted count of length 2 paths from u to v .
When u = v , the paths are u→w→u, so the sum is deg(u) = N.

When u 6= v , every path u
i−→ w

j−→ v is paired with a unique path

u
j−→ w ′

i−→ v of opposite sign, so the sum is 0.
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Spectrum of L

Corollary

The eigenvalues of L are N ±
√
N.

Proposition

Each eigenvalue has multiplicity #V /2, hence det L = (N2 − N)#V /2.

Remark: The matrix theory of Adinkras is thus similar to that of
strongly regular graphs.
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Colored Laplacians

Replace each entry of an edge of color i by an indeterminate ±xi , and
each diagonal entry by σ :=

∑
xi .

1 4

3 2

L =


x1 + x2 0 −x1 −x2

0 x1 + x2 x2 −x1
−x1 x2 x1 + x2 0
−x2 −x1 0 x1 + x2


L2 − 2σL+ (σ2 − ρ)I = 0, where ρ :=

∑
x2i .

detL = (σ2 − ρ)#V /2 = (
∑

i 6=j xixj)
#V /2.
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The Critical Group of an Adinkra

Notation: KA :=coker L ∼= ⊕Z/fiZ with f1|. . .|f#V , #V = 2N−dim C := 2N−k .

N k = 0 k = 1 k = 2 k = 3 k = 4

1 t: (1, 0)

2 t2: (12, 22)

3 t3: (14, 64)

4 t4: (18, 128) d4: (12, 22, 62, 122)

5 t5: (116, 2016) d4 ⊕ t: (18, 208)

6 t6: (132, 3032) d4 ⊕ t2: (116, 3016) d6: (18, 308)

7 t7: (164, 4264) d4 ⊕ t3: (132, 4232) d6 ⊕ t: (116, 4216) e7: (18, 428)

8 t8: (1128, 56128) d4 ⊕ t4: (164, 5664) d6 ⊕ t2: (132, 5632) e7 ⊕ t: (116, 5616)
h8: (156, 28, 288, 5656) d4 ⊕ d4: (124, 28, 288, 5624) d8: (18, 28, 288, 568) e8: (12, 26, 286, 562)

Theorem (IKKY 2021+)

Let N ′ be the largest odd number dividing N2 − N. Then the odd
component of KA is (Z/N ′Z)#V /2.

In “most” cases, KA is just (Z/(N2 − N)Z)#V /2.

But the nice formula doesn’t hold for an infinite family of Adinkras
(e.g. for type D codes with 4|N).
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Upper Bound of p-rank via Eigenvalues

Theorem (Lorenzini 2008)

Let M ∈ Zn×n and let λ1, . . . , λt be the distinct nonzero eigenvalues of M.
Then every nonzero invariant factor of M divides

∏
λi .

Corollary

For an Adinkra, every invariant factor divides N2 − N. Hence for each
p|N2 − N, at least #V /2 invariant factors are divisible by p.
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The p-Sylow Subgroup for p|N − 1

Theorem (Elementary Divisor Theorem)

Let M ∈ Zn×n and let gi be the GCD of all i × i minors of M. Then
f1 . . . fi = gi ,∀i .

Corollary

For each prime p|N − 1, let pα be the largest power of p dividing N − 1.
Then the p-Sylow subgroup of KA is (Z/pαZ)#V /2.

Proof: The #V /2×#V /2 submatrix NI has determinant N#V /2,
which is relatively prime to p, so the first #V /2 invariant factors must
also be relatively prime to p. This forces each remaining invariant factor to
be divisible by pα.
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Some Algebraic Setup

Set x1 = x , x2 = . . . = xN = 1 in the colored Laplacian L to obtain L̂.
Note that det L̂ = (2(N − 1)x + (N − 1)(N − 2))#V /2.

We can further modulo the entries by p and/or setting x = 1.

Z[x ]
x 7→1−−−−→ Zy y

Fp[x ]
x 7→1−−−−→ Fp

,

L̂ −−−−→ Ly y
L̃ −−−−→ L

Lemma

# of invariant factors of L divisible by p
= corank of L
= # of invariant factors of L̃ divisible by x − 1.
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Lower Bound of p-rank for odd p|N

Since det L̃ = (−2(x − 1))#V /2, there can be at most #V /2 invariant
factors of L̃ divisible by x − 1.

Corollary

For each odd p|N, exactly #V /2 invariant factors of L are divisible by p,
and the p-Sylow subgroup of KA is (Z/pαZ)#V /2.

Proposition

Let M ∈ Zn×n and let p be a prime. Then the # of invariant factors of M
divisible by p equals

min{ordx−1 det M̂ ∈ Fp[x ] : M̂ ∈ Z[x ]n×n, M̂|x=1 = M}.
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Shape of Invariant Factors

Proposition

fi f#V−i+1 = N2 − N, and f2i−1 = f2i ,∀i .

Proof Idea: Use the block structure of L to produce the invariant
factors of L from those of the top-right block.

Corollary

Lorenzini’s bound is tight for Adinkras.

Theorem (Hung–Y. 2021+)

If a graph or signed graph has two distinct nonzero Laplacian eigenvalues,
and is not Km,m or K1,p up to switching, then Lorenzini’s bound is tight.
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Special Nice Cases

Observation

If N 6≡ 0 (mod 4), then KA
∼= (Z/(N2 − N)Z)#V /2.

Observation

If A is a prism, then KA
∼= (Z/(N2 − N)Z)#V /2.

Proposition

If 1 6∈ C, then KA
∼= (Z/(N2 − N)Z)#V /2.

Proof Idea: Follows from the results on Cayley graphs of Fr
2 by

Gao–Marx-Kuo–McDonald (2019+).

Chi Ho Yuen (U of Oslo) The Critical Group of an Adinkra 20 / 23



Applications

Corollary (Bai 2003, also a former conjecture of Reiner)

The (ordinary) critical group of a hypercube has exactly 2N−1 − 1
non-trivial ( 6= 0, 1) invariant factors.

Proof Idea: The key part is to find the number of even invariant
factors, but it equals that of a cubical Adinkra’s as we forget signs over F2.

Corollary (Special case of conjectures of Gao–Marx-Kuo–McDonald)

If ker(M) is a doubly even code, then the number of even nonzero
invariant factors of K (Cayley(FN

2 ,M))

is at least 2N−1 − 1. [Conjecture 6.1];

is odd [Conjecture 6.2 (assuming certain eigenvalue hypothesis)].
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Future Directions and Open Problems

When KA 6∼= (Z/(N2 − N)Z)#V /2:

WHAT IS THE 2-SYLOW SUBGROUP (OR 2-RANK)?

Does changing the dashing affect the critical group?

When KA
∼= (Z/(N2 − N)Z)#V /2:

Does a Smith Normal Form of L̂ exist? (Condition is necessary.)

General:

Interpretation of the results via representation theory?

Other interesting instances of the “lift to polynomial ring” trick?
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Thank you!
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