The Critical Group of an Adinkra

Chi Ho Yuen

University of Oslo

Joint Work with Kevin Iga (Pepperdine), Caroline Klivans, and Jordan Kostiuk (Brown)

- Introduction to Adinkras
- Introduction to Critical Groups and Signed Graphs
- The Laplacian and Critical Group of an Adinkra
- Open Problems and Future Directions

Supersymmetry (SUSY): Every boson ϕ has an associated fermion ψ and vice versa.

Physicists are interested in *SUSY superalgebras*, some particularly interesting/useful ones satisfy:

- the algebra is generated by $Q_1, \ldots, Q_N, H := \sqrt{-1}\partial_t;$
- the generators act on $\{\phi_1, \ldots, \phi_m; \psi_1, \ldots, \psi_m\};$
- each Q_i takes a boson to some fermion up to signs and H, vice versa;

•
$$Q_i Q_j + Q_j Q_i = 2\delta_{ij}H$$
 and $Q_i H = HQ_i$.

If we pretend *H* does nothing, we get a *Clifford algebra Cl*(0, *N*): $Q_i^2 = I, Q_i Q_j = -Q_j Q_i.$

イロン イヨン イヨン

Definition (Faux-Gates 2004)

An Adinkra/Cliffordinkra is a (connected, simple) graph with each edge colored by one of N colors and is either solid or dashed, such that:

- the graph is bipartite;
- every vertex is incident to exactly one edge of each color;
- for each pair of distinct colors, the graph restricted to these colored edges is a disjoint union of 4-cycles;
- each bi-colored 4-cycle contains an odd number of dashed edges.

Related to: Error correcting codes, cubical cohomology, combinatorial maps and Riemann surfaces, etc.

3

<ロト < 四ト < 三ト < 三ト

Definition

- Prism: Create a new copy with solid/dashed reversed, match old and new vertices with solid edges of a new color.
- Vertex Switch: Reverse solid/dashed for edges incident to a vertex.

Definition

A doubly even code C is a subspace of \mathbb{F}_2^N such that the weight of every element is a multiple of 4.

EXAMPLE: The row space of
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$
.

Theorem (DFGHILM 2008)

A graph admits an Adinkra structure iff it is a hypercube modulo some doubly even code, i.e., the vertex set is $\mathbb{F}_2^N/\mathcal{C}$, and $[x] \sim [y]$ whenever $x \sim y$ in the hypercube.

EXAMPLE: $K_{4,4}$ is the quotient of the 4-dim cube by the code $\langle (1 \ 1 \ 1 \ 1) \rangle$.

Laplacian, Critical Group, and Matrix-Tree Theorem

Definition

- Laplacian: L := D − A, D is the diagonal matrix whose entries are the vertex degrees, A is the adjacency matrix.
- Critical group: coker $L := \mathbb{Z}^V / \operatorname{row}_{\mathbb{Z}} L = K(G) \oplus \mathbb{Z}$.

As known as *sandpile group* or *Jacobian*, and is related to *chip-firing* and many areas.

Theorem (Kirchhoff's Matrix–Tree Theorem) |K(G)| = # of spanning trees of G.

Signed Graphs

Definition

- Signed Graph: A graph with a signing $E \to \{+, -\}$ of the edges.
- Spanning Tree: Every component has exactly one cycle, which must have an odd number of -*ve* edges.
- Weight of a ST: $w(T) := 4^{\# \text{ of components}}$.

Definition

- Laplacian: L := D A, but an entry of A is -1 if the edge is -ve.
- Critical group: $K(G) := \operatorname{coker} L$.

$$G: \begin{bmatrix} 1 & & & & \\ 0 & 2 & & & \\ 3 & & & & \\ 3 & & & & \\ 0 & 2 & & & \\ 0 & 2 & & & \\ 0 & -1 & -1 & & & \\ 0 & 2 & & & & \\ -1 & 1 & 2 & & & \\ -1 & -1 & 0 & & 2 \end{bmatrix}, K(G) \cong (\mathbb{Z}/2\mathbb{Z})^2$$

Theorem (Zaslavsky 1982)

$$|\mathcal{K}(G)| = \det L = \sum_{\mathcal{T}} w(\mathcal{T}).$$

L is the signed Laplacian of an Adinkra of N colors.

Proposition $L^2 - 2NL + (N^2 - N)I = 0.$

PROOF: We show the simpler relation $A^2 = NI$. It is well-known that the (u, v)-entry of A^2 is the weighted count of length 2 paths from u to v. When u = v, the paths are $u \rightarrow w \rightarrow u$, so the sum is $\deg(u) = N$. When $u \neq v$, every path $u \xrightarrow{i} w \xrightarrow{j} v$ is paired with a unique path $u \xrightarrow{j} w' \xrightarrow{i} v$ of opposite sign, so the sum is 0.

Corollary

The eigenvalues of L are $N \pm \sqrt{N}$.

Proposition

Each eigenvalue has multiplicity # V/2, hence det $L = (N^2 - N)^{\# V/2}$.

REMARK: The matrix theory of Adinkras is thus similar to that of *strongly regular graphs*.

Replace each entry of an edge of color *i* by an indeterminate $\pm x_i$, and each diagonal entry by $\sigma := \sum x_i$.

•
$$\mathcal{L}^2 - 2\sigma \mathcal{L} + (\sigma^2 - \rho)I = 0$$
, where $\rho := \sum x_i^2$.
• det $\mathcal{L} = (\sigma^2 - \rho)^{\# V/2} = (\sum_{i \neq j} x_i x_j)^{\# V/2}$.

The Critical Group of an Adinkra

Notation: $K_A := \operatorname{coker} L \cong \oplus \mathbb{Z}/f_i\mathbb{Z}$ with $f_1 | \dots | f_{\#V}$, $\#V = 2^{N-\dim C} := 2^{N-k}$.

Ν	k = 0	k = 1	<i>k</i> = 2	k = 3	k = 4
1	t: (1,0)				
2	t^2 : $(1^2, 2^2)$				
3	t^3 : $(1^4, 6^4)$				
4	t^4 : (1 ⁸ , 12 ⁸)	d_4 : $(1^2, 2^2, 6^2, 12^2)$			
5	t^5 : $(1^{16}, 20^{16})$	$d_4 \oplus t: (1^8, 20^8)$			
6	t^6 : $(1^{32}, 30^{32})$	$d_4 \oplus t^2$: $(1^{16}, 30^{16})$	d_6 : (1 ⁸ , 30 ⁸)		
7	t^7 : $(1^{64}, 42^{64})$	$d_4 \oplus t^3$: $(1^{32}, 42^{32})$	$d_6 \oplus t$: $(1^{16}, 42^{16})$	e ₇ : (1 ⁸ , 42 ⁸)	
8	t^8 : $(1^{128}, 56^{128})$	$d_4 \oplus t^4$: $(1^{64}, 56^{64})$	$d_6 \oplus t^2$: $(1^{32}, 56^{32})$	$e_7 \oplus t$: $(1^{16}, 56^{16})$	
		h_8 : $(1^{56}, 2^8, 28^8, 56^{56})$	$d_4 \oplus d_4$: (1 ²⁴ , 2 ⁸ , 28 ⁸ , 56 ²⁴)	d_8 : $(1^8, 2^8, 28^8, 56^8)$	e_8 : $(1^2, 2^6, 28^6, 56^2)$

Theorem (IKKY 2021+)

Let N' be the largest odd number dividing $N^2 - N$. Then the odd component of K_A is $(\mathbb{Z}/N'\mathbb{Z})^{\#V/2}$.

- In "most" cases, K_A is just $(\mathbb{Z}/(N^2 N)\mathbb{Z})^{\#V/2}$.
- But the nice formula doesn't hold for an infinite family of Adinkras (e.g. for type D codes with 4|N).

イロン イヨン イヨン

Theorem (Lorenzini 2008)

Let $M \in \mathbb{Z}^{n \times n}$ and let $\lambda_1, \ldots, \lambda_t$ be the distinct nonzero eigenvalues of M. Then every nonzero invariant factor of M divides $\prod \lambda_i$.

Corollary

For an Adinkra, every invariant factor divides $N^2 - N$. Hence for each $p|N^2 - N$, at least #V/2 invariant factors are divisible by p.

Theorem (Elementary Divisor Theorem)

Let $M \in \mathbb{Z}^{n \times n}$ and let g_i be the GCD of all $i \times i$ minors of M. Then $f_1 \dots f_i = g_i, \forall i$.

Corollary

For each prime p|N-1, let p^{α} be the largest power of p dividing N-1. Then the p-Sylow subgroup of K_A is $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\#V/2}$.

PROOF: The $\#V/2 \times \#V/2$ submatrix *NI* has determinant $N^{\#V/2}$, which is relatively prime to *p*, so the first #V/2 invariant factors must also be relatively prime to *p*. This forces each remaining invariant factor to be divisible by p^{α} .

Some Algebraic Setup

Set $x_1 = x, x_2 = \ldots = x_N = 1$ in the colored Laplacian \mathcal{L} to obtain $\hat{\mathcal{L}}$. Note that det $\hat{\mathcal{L}} = (2(N-1)x + (N-1)(N-2))^{\#V/2}$.

We can further modulo the entries by p and/or setting x = 1.

$$\mathbb{Z}[x] \xrightarrow{x \mapsto 1} \mathbb{Z} \qquad \hat{L} \longrightarrow L \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \mathbb{F}_p[x] \xrightarrow{x \mapsto 1} \mathbb{F}_p \qquad \tilde{L} \longrightarrow \overline{L}$$

Lemma

of invariant factors of L divisible by p = corank of \overline{L} = # of invariant factors of \widetilde{L} divisible by x - 1. Since det $\tilde{L} = (-2(x-1))^{\#V/2}$, there can be at most #V/2 invariant factors of \tilde{L} divisible by x - 1.

Corollary

For each odd p|N, exactly #V/2 invariant factors of L are divisible by p, and the p-Sylow subgroup of K_A is $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\#V/2}$.

Proposition

Let $M \in \mathbb{Z}^{n \times n}$ and let p be a prime. Then the # of invariant factors of M divisible by p equals

$$\min\{\operatorname{ord}_{x-1}\det \hat{M}\in \mathbb{F}_p[x]: \hat{M}\in \mathbb{Z}[x]^{n\times n}, \hat{M}|_{x=1}=M\}.$$

イロト イヨト イヨト -

Proposition

$$f_i f_{\#V-i+1} = N^2 - N$$
, and $f_{2i-1} = f_{2i}, \forall i$.

PROOF IDEA: Use the block structure of L to produce the invariant factors of L from those of the top-right block.

Corollary

Lorenzini's bound is tight for Adinkras.

Theorem (Hung–Y. 2021+)

If a graph or signed graph has two distinct nonzero Laplacian eigenvalues, and is not $K_{m,m}$ or $K_{1,p}$ up to switching, then Lorenzini's bound is tight.

Observation

If
$$N \not\equiv 0 \pmod{4}$$
, then $K_A \cong (\mathbb{Z}/(N^2 - N)\mathbb{Z})^{\#V/2}$.

Observation

If A is a prism, then
$$K_A \cong (\mathbb{Z}/(N^2 - N)\mathbb{Z})^{\#V/2}$$
.

Proposition

If
$$1 \notin C$$
, then $K_A \cong (\mathbb{Z}/(N^2 - N)\mathbb{Z})^{\#V/2}$.

PROOF IDEA: Follows from the results on Cayley graphs of \mathbb{F}_2^r by Gao–Marx-Kuo–McDonald (2019+).

э

Corollary (Bai 2003, also a former conjecture of Reiner)

The (ordinary) critical group of a hypercube has exactly $2^{N-1} - 1$ non-trivial ($\neq 0, 1$) invariant factors.

 $\label{eq:proof_IDEA: The key part is to find the number of even invariant factors, but it equals that of a cubical Adinkra's as we forget signs over <math display="inline">\mathbb{F}_2.$

Corollary (Special case of conjectures of Gao-Marx-Kuo-McDonald)

If ker(M) is a doubly even code, then the number of even nonzero invariant factors of $K(Cayley(\mathbb{F}_2^N, M))$

- is at least $2^{N-1} 1$. [Conjecture 6.1];
- is odd [Conjecture 6.2 (assuming certain eigenvalue hypothesis)].

< ロ > < 同 > < 回 > < 回 > < 回 > <

When $K_A \ncong (\mathbb{Z}/(N^2 - N)\mathbb{Z})^{\#V/2}$:

- WHAT IS THE 2-SYLOW SUBGROUP (OR 2-RANK)?
- Does changing the dashing affect the critical group?

When $K_A \cong (\mathbb{Z}/(N^2 - N)\mathbb{Z})^{\#V/2}$:

• Does a Smith Normal Form of \hat{L} exist? (Condition is necessary.)

General:

- Interpretation of the results via representation theory?
- Other interesting instances of the "lift to polynomial ring" trick?

Thank you!

æ

イロト イヨト イヨト イヨト