The Critical Group of an Adinkra

Chi Ho Yuen

University of Oslo
Joint Work with Kevin Iga (Pepperdine), Caroline Klivans, and Jordan Kostiuk (Brown)

Outline

- Introduction to Adinkras
- Introduction to Critical Groups and Signed Graphs
- The Laplacian and Critical Group of an Adinkra
- Open Problems and Future Directions

Some Physics (that I don't really understand)

Supersymmetry (SUSY): Every boson ϕ has an associated fermion ψ and vice versa.

Physicists are interested in SUSY superalgebras, some particularly interesting/useful ones satisfy:

- the algebra is generated by $Q_{1}, \ldots, Q_{N}, H:=\sqrt{-1} \partial_{t}$;
- the generators act on $\left\{\phi_{1}, \ldots, \phi_{m} ; \psi_{1}, \ldots, \psi_{m}\right\}$;
- each Q_{i} takes a boson to some fermion up to signs and H, vice versa;
- $Q_{i} Q_{j}+Q_{j} Q_{i}=2 \delta_{i j} H$ and $Q_{i} H=H Q_{i}$.

If we pretend H does nothing, we get a Clifford algebra $C l(0, N)$: $Q_{i}^{2}=I, Q_{i} Q_{j}=-Q_{j} Q_{i}$.

Adinkras

Definition (Faux-Gates 2004)

An Adinkra/Cliffordinkra is a (connected, simple) graph with each edge colored by one of N colors and is either solid or dashed, such that:
(1) the graph is bipartite;
(2) every vertex is incident to exactly one edge of each color;
(3) for each pair of distinct colors, the graph restricted to these colored edges is a disjoint union of 4-cycles;
(9) each bi-colored 4-cycle contains an odd number of dashed edges.

Related to: Error correcting codes, cubical cohomology, combinatorial maps and Riemann surfaces, etc.

Examples

Some Operations on Adinkras

Definition

- Prism: Create a new copy with solid/dashed reversed, match old and new vertices with solid edges of a new color.
- Vertex Switch: Reverse solid/dashed for edges incident to a vertex.

Classification of the Underlying Graphs

Definition

A doubly even code \mathcal{C} is a subspace of \mathbb{F}_{2}^{N} such that the weight of every element is a multiple of 4 .

EXAMPLE: The row space of $\left(\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right)$.

Theorem (DFGHILM 2008)

A graph admits an Adinkra structure iff it is a hypercube modulo some doubly even code, i.e., the vertex set is $\mathbb{F}_{2}^{N} / \mathcal{C}$, and $[\mathrm{x}] \sim[\mathrm{y}]$ whenever $\mathrm{x} \sim \mathrm{y}$ in the hypercube.

Example: $K_{4,4}$ is the quotient of the 4 -dim cube by the code $\left\langle\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)\right\rangle$.

Laplacian, Critical Group, and Matrix-Tree Theorem

Definition

- Laplacian: $L:=D-A, D$ is the diagonal matrix whose entries are the vertex degrees, A is the adjacency matrix.
- Critical group: coker $L:=\mathbb{Z}^{V} / \operatorname{row}_{\mathbb{Z}} L=K(G) \oplus \mathbb{Z}$.

As known as sandpile group or Jacobian, and is related to chip-firing and many areas.
Theorem (Kirchhoff's Matrix-Tree Theorem)
$|K(G)|=\#$ of spanning trees of G.

Signed Graphs

Definition

- Signed Graph: A graph with a signing $E \rightarrow\{+,-\}$ of the edges.
- Spanning Tree: Every component has exactly one cycle, which must have an odd number of -ve edges.
- Weight of a ST: $w(T):=4^{\#}$ of components.

Weights: 4,4,4,16

Non-examples:

Laplacians and Matrix-Tree Theorem of Signed Graphs

Definition

- Laplacian: $L:=D-A$, but an entry of A is -1 if the edge is $-v e$.
- Critical group: $K(G):=$ coker L.

Theorem (Zaslavsky 1982)
$|K(G)|=\operatorname{det} L=\sum_{T} w(T)$.

A Quadratic Relation of L

L is the signed Laplacian of an Adinkra of N colors.

Proposition

$$
L^{2}-2 N L+\left(N^{2}-N\right) I=0
$$

Proof: We show the simpler relation $A^{2}=N I$. It is well-known that the (u, v)-entry of A^{2} is the weighted count of length 2 paths from u to v. When $u=v$, the paths are $u \rightarrow w \rightarrow u$, so the sum is $\operatorname{deg}(u)=N$. When $u \neq v$, every path $u \xrightarrow{i} w \stackrel{j}{\rightarrow} v$ is paired with a unique path $u \xrightarrow{j} w^{\prime} \xrightarrow{i} v$ of opposite sign, so the sum is 0 .

Spectrum of L

Corollary

The eigenvalues of L are $N \pm \sqrt{N}$.

Proposition

Each eigenvalue has multiplicity $\# V / 2$, hence $\operatorname{det} L=\left(N^{2}-N\right)^{\# V / 2}$.
Remark: The matrix theory of Adinkras is thus similar to that of strongly regular graphs.

Colored Laplacians

Replace each entry of an edge of color i by an indeterminate $\pm x_{i}$, and each diagonal entry by $\sigma:=\sum x_{i}$.

- $\mathcal{L}^{2}-2 \sigma \mathcal{L}+\left(\sigma^{2}-\rho\right) I=0$, where $\rho:=\sum x_{i}^{2}$.
- $\operatorname{det} \mathcal{L}=\left(\sigma^{2}-\rho\right)^{\# V / 2}=\left(\sum_{i \neq j} x_{i} x_{j}\right)^{\# V / 2}$.

The Critical Group of an Adinkra

Notation: $K_{A}:=$ coker $L \cong \oplus \mathbb{Z} / f_{i} \mathbb{Z}$ with $f_{1}|\ldots| f_{\# V}, \# V=2^{N-\operatorname{dim} \mathcal{C}}:=2^{N-k}$.

N	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$
1	$t:(1,0)$				
2	$t^{2}:\left(1^{2}, 2^{2}\right)$				
3	$t^{3}:\left(1^{4}, 6^{4}\right)$				
4	$t^{4}:\left(1^{8}, 12^{8}\right)$	$d_{4}:\left(1^{2}, 2^{2}, 6^{2}, 12^{2}\right)$			
5	$t^{5}:\left(1^{16}, 20^{16}\right)$	$d_{4} \oplus t:\left(1^{8}, 20^{8}\right)$			
6	$t^{6}:\left(1^{32}, 30^{32}\right)$	$d_{4} \oplus t^{2}:\left(1^{16}, 30^{16}\right)$	$d_{6}:\left(1^{8}, 30^{8}\right)$		
7	$t^{7}:\left(1^{64}, 42^{64}\right)$	$d_{4} \oplus t^{3}:\left(1^{32}, 42^{32}\right)$	$d_{6} \oplus t:\left(1^{16}, 42^{16}\right)$	$\mathrm{e}_{7}:\left(1^{8}, 42^{8}\right)$	
8	$t^{8}:\left(1^{128}, 56^{128}\right)$	$\begin{gathered} d_{4} \oplus t^{4}:\left(1^{64}, 56^{64}\right) \\ h_{8}:\left(1^{56}, 2^{8}, 28^{8}, 56^{56}\right) \end{gathered}$	$\begin{gathered} d_{6} \oplus t^{2}:\left(1^{32}, 56^{32}\right) \\ d_{4} \oplus d_{4}:\left(1^{24}, 2^{8}, 28^{8}, 56^{24}\right) \end{gathered}$	$\begin{gathered} e_{7} \oplus t:\left(1^{16}, 56^{16}\right) \\ d_{8}:\left(1^{8}, 2^{8}, 28^{8}, 56^{8}\right) \end{gathered}$	$e_{8}:\left(1^{2}, 2^{6}, 28^{6}, 56^{2}\right)$

Theorem (IKKY 2021+)

Let N^{\prime} be the largest odd number dividing $N^{2}-N$. Then the odd component of K_{A} is $\left(\mathbb{Z} / N^{\prime} \mathbb{Z}\right)^{\# V / 2}$.

- In "most" cases, K_{A} is just $\left(\mathbb{Z} /\left(N^{2}-N\right) \mathbb{Z}\right)^{\# V / 2}$.
- But the nice formula doesn't hold for an infinite family of Adinkras (e.g. for type D codes with $4 \mid N$).

Upper Bound of p-rank via Eigenvalues

Theorem (Lorenzini 2008)

Let $M \in \mathbb{Z}^{n \times n}$ and let $\lambda_{1}, \ldots, \lambda_{t}$ be the distinct nonzero eigenvalues of M. Then every nonzero invariant factor of M divides $\prod \lambda_{i}$.

Corollary

For an Adinkra, every invariant factor divides $N^{2}-N$. Hence for each $p \mid N^{2}-N$, at least $\# V / 2$ invariant factors are divisible by p.

The p-Sylow Subgroup for $p \mid N-1$

Theorem (Elementary Divisor Theorem)

Let $M \in \mathbb{Z}^{n \times n}$ and let g_{i} be the $G C D$ of all $i \times i$ minors of M. Then $f_{1} \ldots f_{i}=g_{i}, \forall i$.

Corollary

For each prime $p \mid N-1$, let p^{α} be the largest power of p dividing $N-1$. Then the p-Sylow subgroup of K_{A} is $\left(\mathbb{Z} / p^{\alpha} \mathbb{Z}\right)^{\# V / 2}$.

Proof: The $\# V / 2 \times \# V / 2$ submatrix $N I$ has determinant $N^{\# V / 2}$, which is relatively prime to p, so the first $\# V / 2$ invariant factors must also be relatively prime to p. This forces each remaining invariant factor to be divisible by p^{α}.

Some Algebraic Setup

Set $x_{1}=x, x_{2}=\ldots=x_{N}=1$ in the colored Laplacian \mathcal{L} to obtain \hat{L}. Note that $\operatorname{det} \hat{L}=(2(N-1) x+(N-1)(N-2))^{\# V / 2}$.
We can further modulo the entries by p and/or setting $x=1$.

Lemma

\# of invariant factors of L divisible by p
$=$ corank of \bar{L}
$=\#$ of invariant factors of \tilde{L} divisible by $x-1$.

Lower Bound of p-rank for odd $p \mid N$

Since $\operatorname{det} \tilde{L}=(-2(x-1))^{\# V / 2}$, there can be at most $\# V / 2$ invariant factors of \tilde{L} divisible by $x-1$.

Corollary

For each odd $p \mid N$, exactly $\# V / 2$ invariant factors of L are divisible by p, and the p-Sylow subgroup of K_{A} is $\left(\mathbb{Z} / p^{\alpha} \mathbb{Z}\right)^{\# V / 2}$.

Proposition

Let $M \in \mathbb{Z}^{n \times n}$ and let p be a prime. Then the $\#$ of invariant factors of M divisible by p equals

$$
\min \left\{\operatorname{ord}_{x-1} \operatorname{det} \hat{M} \in \mathbb{F}_{p}[x]: \hat{M} \in \mathbb{Z}[x]^{n \times n},\left.\hat{M}\right|_{x=1}=M\right\}
$$

Shape of Invariant Factors

Proposition

$f_{i} f_{\# V-i+1}=N^{2}-N$, and $f_{2 i-1}=f_{2 i}, \forall i$.
Proof Idea: Use the block structure of L to produce the invariant factors of L from those of the top-right block.

Corollary

Lorenzini's bound is tight for Adinkras.

Theorem (Hung-Y. 2021+)

If a graph or signed graph has two distinct nonzero Laplacian eigenvalues, and is not $K_{m, m}$ or $K_{1, p}$ up to switching, then Lorenzini's bound is tight.

Special Nice Cases

Observation

If $N \not \equiv 0(\bmod 4)$, then $K_{A} \cong\left(\mathbb{Z} /\left(N^{2}-N\right) \mathbb{Z}\right)^{\# V / 2}$.

Observation

If A is a prism, then $K_{A} \cong\left(\mathbb{Z} /\left(N^{2}-N\right) \mathbb{Z}\right)^{\# V / 2}$.

Proposition

If $1 \notin \mathcal{C}$, then $K_{A} \cong\left(\mathbb{Z} /\left(N^{2}-N\right) \mathbb{Z}\right)^{\# V / 2}$.
Proof Idea: Follows from the results on Cayley graphs of \mathbb{F}_{2}^{r} by Gao-Marx-Kuo-McDonald (2019+).

Applications

Corollary (Bai 2003, also a former conjecture of Reiner)

The (ordinary) critical group of a hypercube has exactly $2^{N-1}-1$ non-trivial $(\neq 0,1)$ invariant factors.

Proof Idea: The key part is to find the number of even invariant factors, but it equals that of a cubical Adinkra's as we forget signs over \mathbb{F}_{2}.

Corollary (Special case of conjectures of Gao-Marx-Kuo-McDonald)

If $\operatorname{ker}(M)$ is a doubly even code, then the number of even nonzero invariant factors of $K\left(\operatorname{Cayley}\left(\mathbb{F}_{2}^{N}, M\right)\right)$

- is at least $2^{N-1}-1$. [Conjecture 6.1];
- is odd [Conjecture 6.2 (assuming certain eigenvalue hypothesis)].

Future Directions and Open Problems

When $K_{A} \neq\left(\mathbb{Z} /\left(N^{2}-N\right) \mathbb{Z}\right)^{\# V / 2}$:

- WHAT IS THE 2-SYLOW SUBGROUP (OR 2-RANK)?
- Does changing the dashing affect the critical group?

When $K_{A} \cong\left(\mathbb{Z} /\left(N^{2}-N\right) \mathbb{Z}\right)^{\# V / 2}$:

- Does a Smith Normal Form of \hat{L} exist? (Condition is necessary.)

General:

- Interpretation of the results via representation theory?
- Other interesting instances of the "lift to polynomial ring" trick?

Thank you!

