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Tübingen)

ASGARD Math 2019

May 16, 2019

Chi Ho Yuen (University of Bern) The Dimension of an Amoeba May 16, 2019 1 / 16



Basic Setup

X ⊂ (C∗)n: irreducible subvariety.

Log : (C∗)n → Rn by (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|).

Ameoba A(X ) := Log(X ).

Notion by Gelfand–Kapranov–Zelevinsky. Related to A-discriminants,
real algebraic geometry, mirror symmetry, etc.
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Example of Amoeba

X = V (x + y + 1) ⊂ (C∗)2.

Figure 1.2 of Tropical Algebraic Geometry by Itenberg et al.
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Tropical Connection

An amoeba has a canonical spine, which is the tropicalisation of X .

A(X ) and Trop(X ).
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Question

Well-known: dimR Trop(X ) = dimC X .

Question

What about the (real) dimension of A(X )?

Intuition/generic case: dimR X = 2 dimC X , and Log is “nice”, so
dimRA(X ) = 2 dimC X .

In general 2 dimC X is an upper bound, but equality does not always
hold.
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Examples of Dimension Drop

Example (Hypersurface)

If n > 2 and X is a hypersurface, then
dimRA(X ) ≤ dimRRn = n < 2(n − 1) = 2 dimC X .

Example (Torus)

X = {(z1w4, z2w5, z3w6) : z ,w ∈ C∗} is a 2-dimensional subtorus.
A(X ) = span{(1, 2, 3), (4, 5, 6)} is a 2-dimensional subspace.
In general, the amoeba of a k-dimensional subtorus is a k-dimensional
subspace.
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More Examples of Dimension Drop

Example (Torus Action)

Suppose S · X := {(s1z1, . . . , snzn) : s ∈ S , z ∈ X} = X for some k-dim
torus S .
X 7→ X/S =: Y ⊂ (C∗)n/S (resp. A(X ) 7→ A(X )/A(S) = A(Y )) has
fibers isomorphic to S (resp. A(S)).
So dimRA(X ) = k + dimRA(Y ) ≤ k + 2 dimC Y = k + 2(dimC X − k) =
2 dimC X − k .

Nisse–Sottile (2018) suggested a program to understand amoebas
better, including a conjecture about the dimension of amoebas.
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Main Theorem

Theorem (Draisma–Rau–Y. 2018+)

dimRA(X ) = min{2 dimC X + 2 dimC T − dimC S}, taken over
T ⊂ S ⊂ (C∗)n subtori such that S · T · X = T · X.

Corollary

dimRA(X ) = min{2 dimC S · X − dimC S : S ⊂ (C∗)n subtorus}.

Corollary (Conjecture of Nisse–Sottile)

dimRA(X ) < min{2 dimC X , n} iff X admits a near/diminishing torus
action.
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Verifications

Theorem (DRY 2018+)

dimRA(X ) = min{2 dimC X + 2 dimC T − dimC S : S · T · X = T · X}.

Example (Trivial Bound)

Take T = S = {1}. Then dimRA(X ) ≤ 2 dimC X .

Example (Hypersurface)

Take T to be any generic 1-dim subtorus such that T · X = (C∗)n. Then
dimRA(X ) ≤ 2 dimC X + 2 dimC T − dimC(C∗)n = 2(n − 1) + 2− n = n.
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Sketch of Proof: The Easy Half

Theorem (DRY 2018+)

dimRA(X ) = min{2 dimC X + 2 dimC T − dimC S : S · T · X = T · X}.

Proof of ≤:

dimRA(X )
≤ dimRA(T · X )
≤ 2 dimC T · X − dimC S
≤ 2(dimC X + dimC T )− dimC S .
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Sketch of Proof: Overview of the Harder Half

Abs : (C∗)n → Rn
>0 by (z1, . . . , zn) 7→ (|z1|, . . . , |zn|).

|X | := Abs(X ) is the algebraic amoeba, which is semi-algebraic.

Goal: Find a rational subspace U of positive dimension that is
contained in (almost) all TqA(X )’s.
Rational: U = span(U ∩Qn).

Idea: |X | is stable under the action of R, the real subtorus whose
tangent space is U. T ,S will be inductively constructed using R (and
its complexification).
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Sketch of Proof: Swapping Quantifiers

Goal: Find a rational subspace U contained in (almost) all TqA(X )’s.

Lemma (“Swapping Quantifiers Principle”)

“∃U, ∀q,U ≤ TqA(X )” is equivalent to “∀q,∃Uq,Uq ≤ TqA(X )”.

Proof: Suppose |X | ≈ A(X ) equals the union of (real-Zariski-closed)
{q : U ≤ TqA(X )} over all rational U’s. |X | is irreducible and the union is
countable, so one of such {q : U ≤ TqA(X )}’s is the whole of |X |.
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Sketch of Proof: Swapping Real and Imaginary Parts

Since z = re iθ, each TzX decomposes into real and imaginary parts from
T1(C∗)n = Cn ∼= Rn ⊕ iRn = T1Rn

>0 ⊕ T0(S1)n.

Observation

Abs takes the real part to T|z||X | and kills the imaginary part. But TzX is
a complex v.s., so its real part is precisely i times its imaginary part.

Now it suffices to find U from Zq := Abs−1(q) ∩ X ⊂ (S1)n.
(More precisely, from

∑
p∈Zq

TpZq.)

U is essentially the tangent space of 〈Zq〉.
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More Tropical Connection

Corollary

dimRA(X ) = min{2 dimR(S + Trop(X ))− dimR S : S ≤ Rn rational}.

Question

Can dimRA(X ) be computed given Trop(X )?

The above formula is computable (using real quantifier elimination) if
the rationality condition is dropped.

But can we drop it?
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Thank you!
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Application

Proposition (Nisse–Sottile)

dimRA(X ) = dimC X iff X is a single torus orbit S · x.

Proof: 2 dimC S · X − dimC S = dimC X for some subtorus S .
Since S · X ⊃ X , S · x, we must have dimC S · X = dimC S = dimC X , but
this forces everything to be equal.
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