## The Combinatorics of Break Divisors

Chi Ho Yuen

Joint Work with Spencer Backman (Einstein Institute for Mathematics) and Matt Baker (Georgia Tech)

Institut Mittag-Leffler Seminar

February 1, 2018

# Divisors and Chip-Firing on Finite Graphs

#### Definition

- Divisor: A configuration to put "chips" on vertices.
- $Div^d(G)$ : The set of degree d divisors.
- *Chip-firing*: Remove deg(v) chips from v, and send one chip along each incident edge.



#### Definition

The Jacobian  $Jac(G) = Pic^{0}(G)$  is  $Div^{0}(G)/\sim$ .  $D \sim D'$  if D, D' differ by a series of chip-firing moves.  $Pic^{d}(G) := Div^{d}(G)/\sim$ .

- Also known as: (degree 0) Picard group, sandpile group, critical group, the group of components...
- Related to MANY areas: statistical physics/probability, combinatorics, graph theory, commutative algebra, representation theory...
- Tropical geometry: Jac(G) keeps track of the information of degenerated line bundles over semistable models.

#### Theorem (Kirchhoff's Matrix–Tree Theorem (Version N+1))

 $|\operatorname{Jac}(G)|$  equals the number of spanning trees of G.

• • • • • • • • • • • •

# Metric Graphs and Divisors

## Definition

- Metric graph Γ: Metric version of a graph, each edge is an interval (as metric space).
- Divisor: We can now add chips inside edges.
- Chip-firing: Fire chips across cuts.



# $\operatorname{Pic}^{0}(\Gamma)$ has the canonical structure of a *g*-dimensional real torus (g := |E| - |V| + 1 is the *genus* of $\Gamma$ ).

- Fix a model G for  $\Gamma$ , and work with  $C_1(G; \mathbb{R}) \cong \mathbb{R}^E$ .
- The subspace H<sub>1</sub>(G; ℝ) and lattice H<sub>1</sub>(G; ℤ) are spanned by cycles of G (over ℝ and ℤ, respectively).
- **3** The *tropical Jacobian*  $Jac(\Gamma)$  is the torus  $H_1(G; \mathbb{R})/H_1(G; \mathbb{Z})$ .
- $\operatorname{Pic}^{0}(G) \cong \operatorname{Jac}(\Gamma)$ : Given a divisor  $D = p_{1} + \ldots + p_{k} q_{1} \ldots q_{k}$ , pick a path  $\gamma_{i}$  from  $p_{i}$  to  $q_{i}$ , map D to  $\gamma_{1} + \ldots + \gamma_{k} \in C_{1}(G; \mathbb{R})$ , project to  $H_{1}(G; \mathbb{R})$  and then to  $\operatorname{Jac}(\Gamma)$ .

 $\operatorname{Div}_{+}^{g}(\Gamma) \cong \Gamma^{g}/\mathfrak{S}_{g}$ : The space of degree *g* effective divisors.

Theorem (Mikhalkin–Zharkov 2008, An–Baker–Kuperberg–Shokrieh 2014)

There exists a unique continuous section to the map  $\mathsf{Div}^g_+(\Gamma) \to \mathsf{Jac}(\Gamma)$ .

#### Remark

Not true in the classical world, e.g., when C is a genus 2 hyperelliptic curve,  $\text{Div}^2_+(C) = \text{Sym}^2(C) \rightarrow \text{Jac}(C)$  is a blow-down map.

## Proof of Existence (Mikhalkin–Zharkov)

Idea: Construct the section via tropical intersection theory.

- Map  $\Gamma$  to Jac( $\Gamma$ ) by the Abel-Jacobi map AJ.
- Take the intersection of AJ(Γ) and a shifted copy of
  Θ = ∑<sub>i=1</sub><sup>g-1</sup> AJ(Γ) ⊂ Jac(Γ) (the tropical theta divisor).
  (Θ can also be defined using tropical theta function.)
- Tropical magic: even when the intersection is not transverse, one can still take stable intersection.



# Proof of Existence (ABKS)

Idea: Write down the section combinatorially.

#### Definition

A break divisor of  $\Gamma$  is a divisor obtained by first choosing a spanning tree T of G and then put a chip at every edge not in T.



## Observation

- For a spanning tree T with e<sub>1</sub>,..., e<sub>g</sub> ∉ T, the break divisors associated to T (essentially) form a parallelotope C<sub>T</sub> := e<sub>1</sub> × ... × e<sub>g</sub>.
- Vertices of the cells are the elements of Jac(G).

## Corollary (ABKS 2014)

 $Jac(\Gamma) = \bigcup_{T} C_{T}$ , and the interior of two distinct cells are disjoint.

## ABKS Decomposition: The Picture



Chi Ho Yuen (Georgia Tech)

Combinatorics of Break Divisors

February 1, 2018 10

10/23

## Proposition (Baker 2017+)

The Zhang measure (tropical canonical measure) of  $\Gamma$  is the distribution of chips of a random break divisor. Analogous discretized statement.

#### Theorem (Shen 2017+)

For a nodal curve X with dual graph  $\Gamma$ , any Simpson compactification of  $\operatorname{Pic}^{g}(X)$  has a stratification "anti-isomorphic" to the face poset of the ABKS decomposition of  $\operatorname{Jac}(\Gamma)$ . Specifically,

•  $\operatorname{Pic}^{g}(X) = \coprod_{F} J^{F}$ , where F runs over the faces of the ABKS decomposition.

$$odim(J^F) = \dim(F), \forall F.$$

**3**  $J^F$  is "glued" to  $J^{F'}$  iff F' is a face of F.

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

## Geometric Bijections

Choose some generic vector v. Shift each vertex along  $-\epsilon v$  so it lands in a cell, now we have a bijection  $\Phi_v$  between spanning trees and Jac(G).

• Setup: v picks an orientation for every cycle C of G, by choosing the one with positive inner product with v.

## Theorem (Y. 2017 (Matrix–Tree Theorem Version N+3))

 $\Phi_v$  maps a spanning tree T to a break divisor as follows: orient each  $e \notin T$  according to its fundmental cycle, put a chip at the head of e.



## Zonotopes

A: The incidence matrix of a graph G (or any matrix). The *zonotope*  $Z_A$  is the projection of  $[0, 1]^E$  by A.



# Zonotopal Tilings

Using a variation of regular subdivision,  $Z_A$  can be partitioned into parallelotopes (with respect to some vector w).



To experts: By Bohne–Dress, Zonotopal tilings  $\Leftrightarrow$  Single-element liftings.

# Shifting (Again)

Shift the vertices along some generic v as last time. Again we have a bijection  $\Phi_{w,v}$  between spanning trees and (some) vertices.

Vertices  $\approx \operatorname{Pic}^{m}(G) \approx \operatorname{Jac}(G)$  by taking indegree sequence.



## Generalized Geometric Bijections [Backman-Baker-Y. 2016+]

The vectors w (for tiling) and v (for shifting) pick an orientation for every cycle and cut of G. The bijection  $\Phi_{w,v}$  can be described as follows:

- Given a spanning tree T.
- Orient each e ∉ T according to its fundmental cycle.
  Orient each e ∈ T according to its fundmental cut.
- (Optional) Put a chip at the head of every edge.



# Tiling of $Jac(\Gamma)$



Chi Ho Yuen (Georgia Tech)

Combinatorics of Break Divisors

February 1, 2018 17

7 / 23

## Proposition (Y. 2017+)

The ABKS decomposition of G (lifted to the universal cover), coincides with certain zonotopal tiling of  $Z_{M(G)^*}$  (tiling the whole space).



Chi Ho Yuen (Georgia Tech)

# Tiling of Zonotopes

### Observation

Many zonotopal tilings lead to the same ABKS decomposition.



Chi Ho Yuen (Georgia Tech)

#### Observation

Any bijection  $\phi$  between Jac(G) and the collection of spanning trees induces a Jac(G)-action (torsor) by  $[D] \cdot T := \phi([D] + \phi^{-1}(T))$ .

## Proposition (Y. 2017+)

Two "geometric" group actions for a plane graph G are isomorphic iff the corresponding tilings for its **dual graph**  $G^*$  differ only by a translation. General statement works in the setting of regular matroids.

- Technical Statement: Φ<sub>w,v</sub> and Φ<sub>w,v'</sub> induce isomorphic group actions iff the extension tilings of G<sup>\*</sup> induced by v and v' differ by a translation.
- Punchline: The group action "dual" to ABKS decomposition was studied by combinatorists before.

(I) < (II) <

## Special Group Actions for Plane Graphs

Olivier Bernardi's process (08): Fix a starting edge (v, f) in a plane graph.

• For every spanning tree T, starting with (v, f), walk along edges in T.

• Cut every  $e \notin T$  twice, put a chip at the end that was being cut first. There is an analogous *rotor-routing* that also produces Jac(G)-actions.



Theorem (Baker–Wang 2017, Chan–Church–Grochow 2015)

All Bernardi bijections and rotor-routings induce isomorphic group actions.

### Proposition (Y. 2017+)

The ABKS decomposition of G is the "dual" of such action for  $G^*$ .

#### The canonical group action for a plane graph "⇔"

#### The canonical tropical structure on its dual

- (8) Jordan Ellenberg: "By the Matrix-Tree theorem, the number of spanning trees of a graph G equals the size of the critical group of G. When are the spanning trees a torsor for the critical group? Making G into a ribbon graph, and given choice of sink, we do get a torsor structure from the rotor-router model [21]. But under what conditions can we get a natural torsor action without this additional data?"
  - (c) Matt Baker: "A recent paper of mine and several coauthors [2] almost achieves this through a polyhedral decomposition of the real g-dimensional torus (where g is the genus of the graph). The cells of this decomposition are canonically in bijection with the spanning trees, the vertices are canonically in bijection with  $\operatorname{Pie}^{g}(G)$ , and  $\operatorname{Pie}^{g}(G)$  is canonically a torsor for the critical group. The only thing that is not canonical here is the bijection between vertices and cells of the decomposition."
  - (f) Melody Chan: "In my recent paper with Church and Grochow [14], we look at when the choice of sink is needed in the rotor-router model. We show that the resulting torsor is independent of the choice of sink if and only if the graph G is planar."

From the problem session of the 2013 AIM workshop on chip-firing (scribed by Sam Hopkins).

< ロ > < 同 > < 回 > < 回 >

# Thank you!

< □ > < 同 >

æ