The Combinatorics of Break Divisors

Chi Ho Yuen

Joint Work with Spencer Backman (Einstein Institute for Mathematics) and Matt Baker (Georgia Tech)

Institut Mittag-Leffler Seminar
February 1, 2018

Divisors and Chip-Firing on Finite Graphs

Definition

- Divisor: A configuration to put "chips" on vertices.
- $\operatorname{Div}^{d}(G)$: The set of degree d divisors.
- Chip-firing: Remove $\operatorname{deg}(v)$ chips from v, and send one chip along each incident edge.

Jacobian

Definition

The $\operatorname{Jacobian} \operatorname{Jac}(G)=\operatorname{Pic}^{0}(G)$ is $\operatorname{Div}^{0}(G) / \sim$.
$D \sim D^{\prime}$ if D, D^{\prime} differ by a series of chip-firing moves.
$\operatorname{Pic}^{d}(G):=\operatorname{Div}^{d}(G) / \sim$.

- Also known as: (degree 0) Picard group, sandpile group, critical group, the group of components...
- Related to MANY areas: statistical physics/probability, combinatorics, graph theory, commutative algebra, representation theory...
- Tropical geometry: $\operatorname{Jac}(G)$ keeps track of the information of degenerated line bundles over semistable models.

Theorem (Kirchhoff's Matrix-Tree Theorem (Version N+1))

$|\operatorname{Jac}(G)|$ equals the number of spanning trees of G.

Metric Graphs and Divisors

Definition

- Metric graph Г: Metric version of a graph, each edge is an interval (as metric space).
- Divisor: We can now add chips inside edges.
- Chip-firing: Fire chips across cuts.

Tropical Jacobian

$\operatorname{Pic}^{0}(\Gamma)$ has the canonical structure of a g-dimensional real torus $(g:=|E|-|V|+1$ is the genus of Γ).
(1) Fix a model G for Γ, and work with $C_{1}(G ; \mathbb{R}) \cong \mathbb{R}^{E}$.
(2) The subspace $H_{1}(G ; \mathbb{R})$ and lattice $H_{1}(G ; \mathbb{Z})$ are spanned by cycles of G (over \mathbb{R} and \mathbb{Z}, respectively).
(3) The tropical Jacobian $\operatorname{Jac}(\Gamma)$ is the torus $H_{1}(G ; \mathbb{R}) / H_{1}(G ; \mathbb{Z})$.

- $\operatorname{Pic}^{0}(G) \cong \operatorname{Jac}(\Gamma):$ Given a divisor $D=p_{1}+\ldots+p_{k}-q_{1}-\ldots-q_{k}$, pick a path γ_{i} from p_{i} to q_{i}, map D to $\gamma_{1}+\ldots+\gamma_{k} \in C_{1}(G ; \mathbb{R})$, project to $H_{1}(G ; \mathbb{R})$ and then to $\operatorname{Jac}(\Gamma)$.

The Geometry of $\operatorname{Div}_{+}^{g}(\Gamma) \rightarrow \operatorname{Jac}(\Gamma)$

$\operatorname{Div}_{+}^{g}(\Gamma) \cong \Gamma^{g} / \mathfrak{S}_{g}$: The space of degree g effective divisors.
Theorem (Mikhalkin-Zharkov 2008, An-Baker-Kuperberg-Shokrieh 2014)
There exists a unique continuous section to the map $\operatorname{Div}_{+}^{g}(\Gamma) \rightarrow \operatorname{Jac}(\Gamma)$.

Remark

Not true in the classical world, e.g., when C is a genus 2 hyperelliptic curve, $\operatorname{Div}_{+}^{2}(C)=\operatorname{Sym}^{2}(C) \rightarrow \operatorname{Jac}(C)$ is a blow-down map.

Proof of Existence (Mikhalkin-Zharkov)

Idea: Construct the section via tropical intersection theory.
(1) Map 「 to $\mathrm{Jac}(\Gamma)$ by the Abel-Jacobi map $A J$.
(2) Take the intersection of $A J(\Gamma)$ and a shifted copy of $\Theta=\sum_{i=1}^{g-1} A J(\Gamma) \subset J a c(\Gamma)$ (the tropical theta divisor). (Θ can also be defined using tropical theta function.)
(3) Tropical magic: even when the intersection is not transverse, one can still take stable intersection.

Proof of Existence (ABKS)

Idea: Write down the section combinatorially.

Definition

A break divisor of Γ is a divisor obtained by first choosing a spanning tree T of G and then put a chip at every edge not in T.

Theorem (ABKS 2014)

Break divisors form a set of representatives for $\mathrm{Pic}^{g}(\Gamma)$ (and $\mathrm{Pic}^{g}(G)$).

The ABKS Decomposition

Observation

- For a spanning tree T with $e_{1}, \ldots, e_{g} \notin T$, the break divisors associated to T (essentially) form a parallelotope $\mathcal{C}_{T}:=e_{1} \times \ldots \times e_{g}$.
- Vertices of the cells are the elements of $\operatorname{Jac}(G)$.

Corollary (ABKS 2014)

$\operatorname{Jac}(\Gamma)=\bigcup_{T} \mathcal{C}_{T}$, and the interior of two distinct cells are disjoint.

ABKS Decomposition: The Picture

Theorem (Kirchhoff's Matrix-Tree Theorem (Version N+2))
The volume of $\operatorname{Jac}(\Gamma)$ is the determinant of the reduced Laplacian.

Applications in Algebraic Geometry

Proposition (Baker 2017+)

The Zhang measure (tropical canonical measure) of Γ is the distribution of chips of a random break divisor. Analogous discretized statement.

Theorem (Shen 2017+)

For a nodal curve X with dual graph Γ, any Simpson compactification of Pic ${ }^{g}(X)$ has a stratification "anti-isomorphic" to the face poset of the ABKS decomposition of $\mathrm{Jac}(\Gamma)$. Specifically,
(1) $\widehat{\operatorname{Pic}^{g}(X)}=\coprod_{F} J^{F}$, where F runs over the faces of the $A B K S$ decomposition.
(2) $\operatorname{codim}\left(J^{F}\right)=\operatorname{dim}(F), \forall F$.
(3) J^{F} is "glued" to $J^{F^{\prime}}$ iff F^{\prime} is a face of F.

Geometric Bijections

Choose some generic vector v. Shift each vertex along $-\epsilon v$ so it lands in a cell, now we have a bijection Φ_{v} between spanning trees and $\mathrm{Jac}(G)$.

- Setup: v picks an orientation for every cycle C of G, by choosing the one with positive inner product with v .

Theorem (Y. 2017 (Matrix-Tree Theorem Version N+3))

Φ_{v} maps a spanning tree T to a break divisor as follows: orient each $e \notin T$ according to its fundmental cycle, put a chip at the head of e.

Zonotopes

A : The incidence matrix of a graph G (or any matrix).
The zonotove Z_{\wedge} is the proiection of $\left[0.11^{E}\right.$ bv A.

Zonotopal Tilings

Using a variation of regular subdivision, Z_{A} can be partitioned into parallelotopes (with respect to some vector w).

To experts: By Bohne-Dress, Zonotopal tilings \Leftrightarrow Single-element liftings.

Shifting (Again)

Shift the vertices along some generic v as last time. Again we have a bijection $\Phi_{\mathrm{w}, \mathrm{v}}$ between spanning trees and (some) vertices.
Vertices $\approx \operatorname{Pic}^{m}(G) \approx \operatorname{Jac}(G)$ by taking indegree sequence.

Generalized Geometric Bijections [Backman-Baker-Y. 2016+]

The vectors w (for tiling) and v (for shifting) pick an orientation for every cycle and cut of G. The bijection $\Phi_{w, v}$ can be described as follows:

- Given a spanning tree T.
- Orient each $e \notin T$ according to its fundmental cycle.

Orient each $e \in T$ according to its fundmental cut.

- (Optional) Put a chip at the head of every edge.

Tiling of Jac(Г)

Tiling of Zonotopes

Proposition (Y. 2017+)

The ABKS decomposition of G (lifted to the universal cover), coincides with certain zonotopal tiling of $Z_{M(G)^{*}}$ (tiling the whole space).

Tiling of Zonotopes

Observation

Many zonotopal tilings lead to the same $A B K S$ decomposition.

Group Action-Tiling Duality

Observation

Any bijection ϕ between $\operatorname{Jac}(G)$ and the collection of spanning trees induces a $\mathrm{Jac}(G)$-action (torsor) by $[D] \cdot T:=\phi\left([D]+\phi^{-1}(T)\right)$.

Proposition (Y. 2017+)

Two "geometric" group actions for a plane graph G are isomorphic iff the corresponding tilings for its dual graph G^{*} differ only by a translation. General statement works in the setting of regular matroids.

- Technical Statement: $\Phi_{\mathrm{w}, \mathrm{v}}$ and $\Phi_{\mathrm{w}, \mathrm{v}^{\prime}}$ induce isomorphic group actions iff the extension tilings of G^{*} induced by v and v^{\prime} differ by a translation.
- Punchline: The group action "dual" to ABKS decomposition was studied by combinatorists before.

Special Group Actions for Plane Graphs

Olivier Bernardi's process (08): Fix a starting edge (v, f) in a plane graph.

- For every spanning tree T, starting with (v, f), walk along edges in T.
- Cut every e $\notin T$ twice, put a chip at the end that was being cut first. There is an analogous rotor-routing that also produces $\operatorname{Jac}(G)$-actions.

Theorem (Baker-Wang 2017, Chan-Church-Grochow 2015)
All Bernardi bijections and rotor-routings induce isomorphic group actions.

Proposition (Y. 2017+)

The $A B K S$ decomposition of G is the "dual" of such action for G^{*}.

Some History

The canonical group action for a plane graph " \Leftrightarrow "

The canonical tropical structure on its dual

(8) Jordan Ellenberg: "By the Matrix-Tree theorem, the number of spanning trees of a graph G equals the size of the critical group of G. When are the spanning trees a torsor for the critical group? Making G into a ribbon graph, and given choice of sink, we do get a torsor structure from the rotor-router model [21]. But under what conditions can we get a natural torsor action without this additional data?"
(c) Matt Baker: "A recent paper of mine and several coauthors [2] almost achieves this through a polyhedral decomposition of the real g-dimensional torus (where g is the genus of the graph). The cells of this decomposition are canonically in bijection with the spanning trees, the vertices are canonically in bijection with $\operatorname{Pic}^{g}(G)$, and $\operatorname{Pic}^{g}(G)$ is canonically a torsor for the critical group. The only thing that is not canonical here is the bijection between vertices and cells of the decomposition."
(f) Melody Chan: "In my recent paper with Church and Grochow [14], we look at when the choice of sink is needed in the rotor-router model. We show that the resulting torsor is independent of the choice of sink if and only if the graph G is planar."
From the problem session of the 2013 AIM workshop on chip-firing (scribed by Sam Hopkins).

Thank you!

